Home / Archive by Category "Featured" (Page 6)

Archives

Astute use of ANSYS CFD contributes to the success of Australian teams at F1 in Schools 2013 World Finals

LEAP is very proud to congratulate the students from A1 Racing for winning the F1 in Schools 2013 World Finals in Austin, Texas.  A1 Racing are a collaboration team between Pine Rivers in Brisbane, QLD, and Phoenix P-12 in Ballarat, Vic, who have continued the proud tradition of Australian students excelling at this international event by becoming the third successive Australian-based team to win the World Finals (with previous winners hailing from Tasmania and South Australia). In our last post, we mentioned that the use of CFD for aerodynamic design and stability at A1 Racing had already brought some early success, with their team having won the fastest car competition by leading the timetrial event.  Later that evening, it was announced that A1 Racing was also the overall...

Can CFD help to solve Australia’s greatest aviation mystery?

On a stormy night in August 1981, a Cessna Centurion 210 aircraft crashed with 5 people on board in Barrington Tops, a rugged and isolated national park north of Newcastle, New South Wales.  Despite a massive initial search effort and ongoing attempts by a group of dedicated volunteers, the challenging and complex terrain has conspired to prevent the wreckage from ever being found. To put this into some perspective: according to Corporal Mark Nolan (Pilot, Australian Army), this is the only aircraft to have crashed on mainland Australia and never be recovered.  We can only imagine how frustrating and heartbreaking this must be for the victim’s families to be denied this closure. One of the biggest factors that has inhibited previous search attempts is the...

Sunswift leads race to Adelaide in new "Cruiser" class of 2013 World Solar Challenge

In the past, posters of cars such as the KTM Crossbow and Infiniti Red Bull F1 would adorn the bedroom walls of teenagers who were passionate about motorsport, while solar cars were banished to science fairs as a mere curiosity. Enter the UNSW Sunswift Solar Car Team, who are looking to radically change this status quo by building eVe, a next-generation solar car that the team has described as both “sporty, efficient and beautiful”. Sunswift’s eVe is entered into the newly created “Cruiser” class in the 2013 World Solar Challenge, which concludes today in Adelaide. Behind the flowing aerodynamic curves and shiny carbon fibre, eVe is a complex feat of engineering, combining the best technologies across a range of engineering disciplines (including students studying electrical,...

Turbulence Part 5 - Overview of Scale-Resolving Simulations (SRS)

An increasing number of industrial CFD users are recognising the need to move away from RANS modelling and resolve a greater spectrum of turbulence (particularly in cases involving large-scale separation, strongly swirling flows, acoustics, etc.). Here we present an overview of Scale Resolving Simulation techniques and important considerations when considering applying SRS to your project.

CFD keeps Emirates Team New Zealand on course to reclaim the America's Cup

LEAP staff, in particular our team of CFD engineers, have been watching with interest as the 2013 America's Cup unfolds in San Francisco. Despite being the oldest active trophy in international sport, the America's Cup is continually evolving thanks to an often dramatic combination of ...

5 key areas where ANSYS Multiphysics will help overcome the engineering challenges of Elon Musk's Hyperloop

This week marked the public release of Elon Musk's much anticipated proposal for a new mode of high-speed transport to be built between LA and San Francisco, dubbed the Hyperloop.  The concept is equally compelling for other busy air routes of between 500-1000 km, such as Sydney to Melbourne (which is the 3rd busiest air route globally, according to Wikipedia).  For engineers, the Hyperloop is an exciting concept which promises to provide an alternative to high-speed rail that is both faster, cheaper and more energy efficient, but the reality is that numerous engineering challenges need to be overcome to deliver this project on-time and on-budget with an acceptable level of safety (in one of the most seismically-active regions on earth!). ANSYS Multiphysics software is uniquely placed to help the eventual collaboration...

Tips & Tricks: Estimating the First Cell Height for correct Y+

Note: this is an old post.  The updated post series from 2020 is LEAP's 3-Part Series on "What y+ should I use in my simulations?" which is available here: Part 1 – Understanding the physics of boundary layers Part 2 – Resolving each region of the boundary layer Part 3 – Understanding impact of Y+ and number of prism layers on flow resolution Old Post continues here: In previous posts we have stressed the importance of using an appropriate  value in combination with a given turbulence modelling approach. Today we will help you calculate the correct first cell height () based on your desired  value. This is an important first step as the global mesh resolution parameters will also be influenced by this near-wall mesh as well as the Reynolds...

Turbulence Part 4 - Reviewing how well you have resolved the Boundary Layer

In recent posts we have comprehensively discussed inflation meshing requirements for resolving or modeling wall-bounded flow effects due to the turbulent boundary layer. We have identified the y-plus value as the critical parameter for inflation meshing requirements, since it allows us to determine whether our first cell resides within the laminar sub-layer, or the logarithmic region. We can then select the most suitable turbulence model based on this value. Whilst this theoretical knowledge is important regarding composite regions of the turbulent boundary layer and how it relates to y-plus values, it is also useful to conduct a final check during post-processing to ensure we have an adequate number of prism layers to fully capture the turbulent boundary layer profile, based on the turbulence model used (or...

1 4 5 6