### Archives for unsteady flow models

#### Guest Blog by RMIT Racing: Using Augmented Reality (AR) for R18c - Designing for the Future

RMIT Racing explains how both their combustion and electric F-SAE teams have decided to employ the use of Augmented Reality (AR) with technical support from LEAP for their 2018 campaigns, including an impressive visualisation of the aerodynamics of the R17c vehicle.

#### Going with the Flow

The water industry has a range of engineering challenges and specific regulatory requirements, especially concerning flow assurance, water quality, and even component selection. Learn how CFD delivers real value to the water industry - such as predicting complex flow behavior, across individual components or large network systems.

#### Exciting advances in Wind Engineering using ANSYS CFD

Wind engineering requires engineers to consider how a building responds to its environment as well as the effect that the structure will have on the space around it. Learn more about the use of CFD in wind engineering...

#### Solving Complex Combustion Challenges with CFD

Combustion technology underpins almost every facet of our modern life, from electricity generation to industrial heaters/furnaces through to automotive engines. Increasing social and economic pressure to minimise energy use and reduce pollution is driving the use of CFD to improve the efficiency of combustion processes.

#### Turbulence Part 5 - Overview of Scale-Resolving Simulations (SRS)

An increasing number of industrial CFD users are recognising the need to move away from RANS modelling and resolve a greater spectrum of turbulence (particularly in cases involving large-scale separation, strongly swirling flows, acoustics, etc.). Here we present an overview of Scale Resolving Simulation techniques and important considerations when considering applying SRS to your project.

#### How does the Reynolds Number affect my CFD model?

The Reynolds number (Re) is the single most important non-dimensional number in fluid dynamics and is recommended to be calculated before you begin any new CFD modelling project.  The Reynolds Number is defined as the dimensionless ratio of the inertial forces to viscous forces and quantifies their relevance for the prescribed flow condition: Where U∞...

#### (Part 2) 10 Useful Tips on selecting the most appropriate multiphase flow CFD models

As we discussed in our previous post, the first step when  tackling a multiphase CFD problem is to identify the key characteristics of your physical system.  Once you've done this (using our checklist if you are still new to multiphase CFD), you can begin to make informed decisions on what multiphase modelling approaches to use....

#### Webinar: Recent Advancements in Turbulence Modelling with Dr. Florian Menter

As part of the visit to Australia by Dr Florian Menter, world-recognised expert in turbulence modelling, LEAP Australia is pleased to announce a webinar to be held on Thursday Aug 30th at 11am AEST.  This webinar will provide an overview of recent advancements in turbulence modelling and is being held for those customers unable to...

#### Top Australian Design Award goes to Deepsea Challenger submersible

LEAP Australia wishes to congratulate Finite Elements Pty Ltd on their impressive use of ANSYS simulation technology during the design and testing of James Cameron's Deepsea Challenge submersible vehicle, which successfully completed its historic expedition to the Mariana Trench’s lowest point, the Challenger Deep, on March 25, 2012.   The Deepsea Challenger submersible became the first...

#### Learn from the Expert: Turbulence Training with Dr. Florian Menter

Dr. Menter is a world-recognised expert in turbulence modelling.

He developed the widely used Shear-Stress Transport (SST) turbulence model, which has set a milestone in the accurate prediction of aerodynamic flows. He has also contributed to the formulation of one-equation turbulence models, advanced near wall treatment of turbulence equations, transition modelling and unsteady flow models. He has been in charge of the turbulence modelling program at ANSYS for more than 15 years and has been involved in a wide range of industrial modelling challenges.