UA-33602782-1
An Increasing Appetite for Innovation in the Food Industry
May03

An Increasing Appetite for Innovation in the Food Industry

Companies in the food & beverage industries looking to grow their business are implementing new technologies, such as simulation, to enable their engineers to develop new products and implement process innovations necessary to provide efficiencies of scale. Here are 7 ways that food & beverage manufacturers can harness cutting-edge simulation technology.

Read More
Going with the Flow
Jun30

Going with the Flow

The water industry has a range of engineering challenges and specific regulatory requirements, especially concerning flow assurance, water quality, and even component selection. Learn how CFD delivers real value to the water industry - such as predicting complex flow behavior, across individual components or large network systems.

Read More
Smart gas appliance manufacturers use rising gas costs to their competitive advantage
Oct29

Smart gas appliance manufacturers use rising gas costs to their competitive advantage

With gas prices predicted to skyrocket in the next few years, an opportunity exists for engineers and designers of gas-fired appliances at smart manufacturers to use CFD to gain an edge in the competitive Australian market.

Read More
Using CFD to enhance your mixing process and drive down costs
Sep04

Using CFD to enhance your mixing process and drive down costs

Mixing processes are critical to a wide range of industrial applications across the the paint, food, pharmaceutical, minerals and water treatment industries. CFD is becoming fundamental to the successful operation of mixing processes including clarification, cell culture growth, fermentation, polymerization and blending.

Read More
Astute use of ANSYS CFD contributes to the success of Australian teams at F1 in Schools 2013 World Finals
Nov29

Astute use of ANSYS CFD contributes to the success of Australian teams at F1 in Schools 2013 World Finals

LEAP is very proud to congratulate the students from A1 Racing for winning the F1 in Schools 2013 World Finals in Austin, Texas.  A1 Racing are a collaboration team between Pine Rivers in Brisbane, QLD, and Phoenix P-12 in Ballarat, Vic, who have continued the proud tradition of Australian students excelling at this international event by becoming the third successive Australian-based team to win the World Finals (with previous winners hailing from Tasmania and South Australia). In our last post, we mentioned that the use of CFD for aerodynamic design and stability at A1 Racing had already brought some early success, with their team having won the fastest car competition by leading the timetrial event.  Later that evening, it was announced that A1 Racing was also the overall winner of F1 in Schools 2013 World Finals. Let’s go into some more detail on how LEAP’s CFD simulations may have assisted A1 Racing to design the fastest car at the F1 in Schools competition. To begin with, a detailed steady-state analysis was performed in order to evaluate the cars aerodynamic performance in terms of lift, downforce and pitching moment.  By nondimensionalising the lift, downforce and pitching moment, the aerodynamic performance at any speed could be calculated and used to rank the different conceptual designs. It was shown that the most critical factors in obtaining accurate results in these initial studies was in creating a high-fidelity boundary layer mesh for the entire car, and also applying the advanced turbulence modelling capabilities of ANSYS to accurately predict regions of flow separation and the formation of vortices in the wake. Additionally, in order to most accurately reproduce the race conditions for the track, more realistic boundary conditions were applied such as: - a moving ground plane - rotating wheels - inclusion of exhaust gases from the CO2 canister that provides thrust to the car (It was found that in preliminary tests that this stream of high-velocity gas had a large influence on the wake profile, and therefore needed to be included to accurately predict the drag force acting on each car design). In addition to these “straight-line” CFD simulations, the cars were also simulated in a number of different orientations to evaluate the static stability of the car. The car was simulated for both zero angle, small angle and large angle perturbations of pitch and sideslip.. These combinations of different pitch and sideslip perturbations gave the designers a total of nine unique design points which were automatically run in a parametric study of the car’s stability using ANSYS DesignXplorer. Using this approach, the full matrix of simulation results were completed with design point each providing values...

Read More
UA-33602782-1